## THE RESPIRATORY SYSTEM & THE SKIN LECTURE 5

#### 1<sup>ST</sup> YEAR-BIOLOGY SUBJECT – LABORATORY SCIENCE DEPARTMENTS

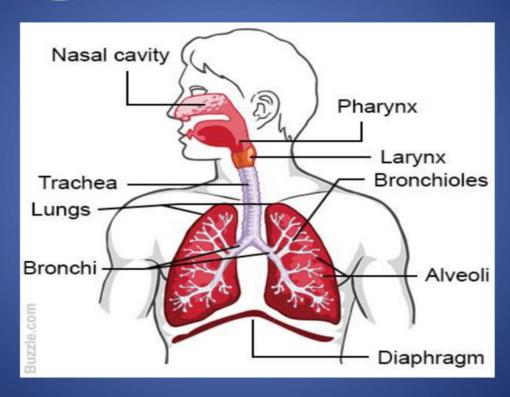
#### ALZAHRAA UNIVERSITY – COLLEGE OF PHARMACY

Dr .Esraa Ali Almustafa

M.B.Ch.B, F.I.C.M.S/PATH

## Learning objectives

Upon completion of this lecture you should be able to


- 1. Identify the structures of the human respiratory system
- 2. Identify the structures of upper respiratory tract & Lower respiratory tract
- 3. Summarize the role of respiratory system in the body
- 4. Understand the Mechanism of Breathing
- 5. Summarize the function the skin

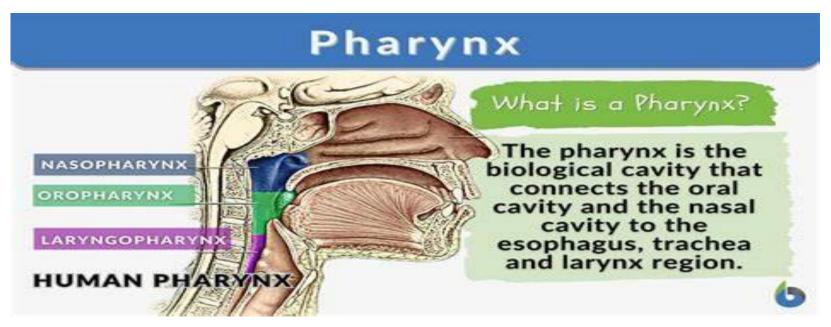
#### Introduction

- The respiratory system plays a crucial role in maintaining homeostasis by providing oxygen to the body and removing carbon dioxide.
- It consists of various structures and processes that work together to
- 1. ensure efficient gas exchange
- 2. regulate acid-base balance
- 3. and facilitate vocalization.

## Organs of the respiratory system

#### THE RESPIRATORY SYSTEM




# The respiratory system can be divided anatomically into

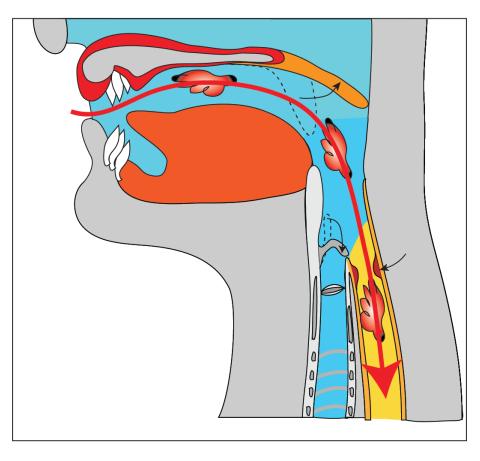
- upper respiratory tract
- 1) nose and Nasal Cavity
- 2) Pharynx
- 3) Larynx
- Lower respiratory tract
- 1) Trachea
- 2) Bronchi
- 3) Lung
- 4) alveoli

#### 1- upper respiratory tract

- Nose and Nasal Cavity:
- The entry point for air, where it is filtered, warmed, and moistened.
- >The mucous membranes trap particles and pathogens.
- >- Contains olfactory receptors for the sense of smell.
- - Pharynx: A muscular tube that connects the nasal cavity and mouth to the larynx and esophagus.
- It plays a role in both the respiratory and digestive systems.

## Parts of the pharynx

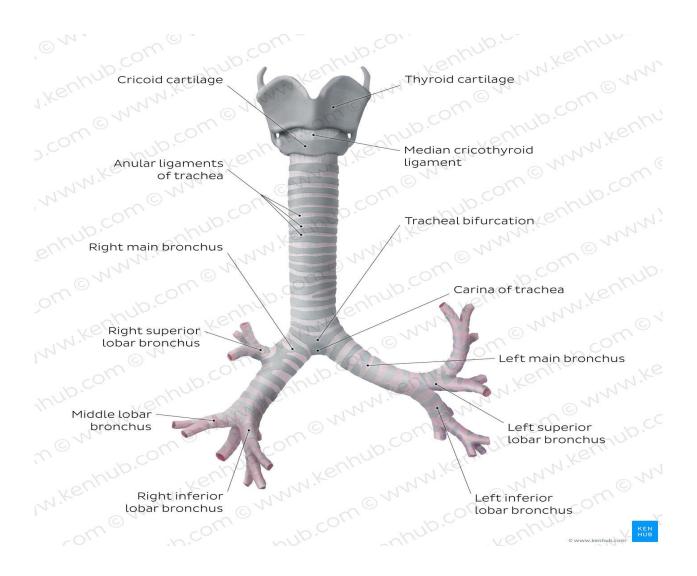



- Larynx: Also known as the voice box, it houses the vocal cords and is responsible for sound production.
- The epiglottis, a flap of cartilage, prevents food from entering the trachea during swallowing.

## epiglottis

#### Inspiration

## hard palate oral cavity tongue upper epiglottis esophageal sphincter BasicPhysiology.org

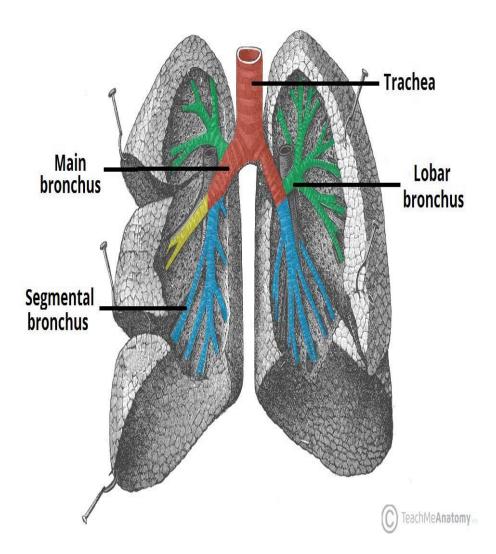

#### **Swallowing**

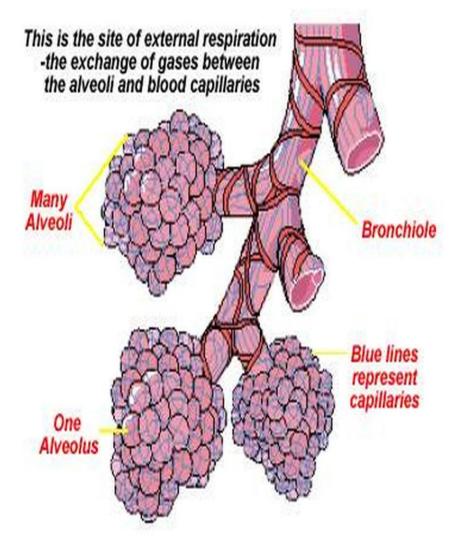


#### Lower Respiratory Tract:

- - **Trachea**: A cylindrical tube that extends from the larynx and branches into the bronchi. It is reinforced with cartilage rings to keep it open.
- Bifurcates into the right and left bronchi at the carina.
- - **Bronchi**: The trachea divides into two main bronchi (left and right) that lead to each lung.
- These further branch into smaller bronchi and bronchioles.
- The right bronchus is wider and more vertical, making it more susceptible to aspiration

#### Trachea & bronchi





## Lower respiratory tract

- Lungs: Paired organs located in the thoracic cavity, responsible for gas exchange.
- Each lung is divided into lobes (three in the right lung and two in the left).
- Alveoli: Tiny air sacs at the end of bronchioles where gas exchange occurs. They are surrounded by a network of capillaries.
- Approximately there are 300 million alveoli in the lungs, increasing surface area for gas exchange.

## Bronchiole with Alveoli (each sphere is an individual alveolus)

## Lung





## Function of the Respiratory System

#### a. Gas Exchange:

- Oxygen Uptake: Oxygen from inhaled air diffuses across the alveolar walls into the bloodstream.
- Carbon Dioxide Removal: Carbon dioxide produced by cellular metabolism diffuses from the blood into the alveoli to be exhaled.

#### b. Regulation of Blood pH:

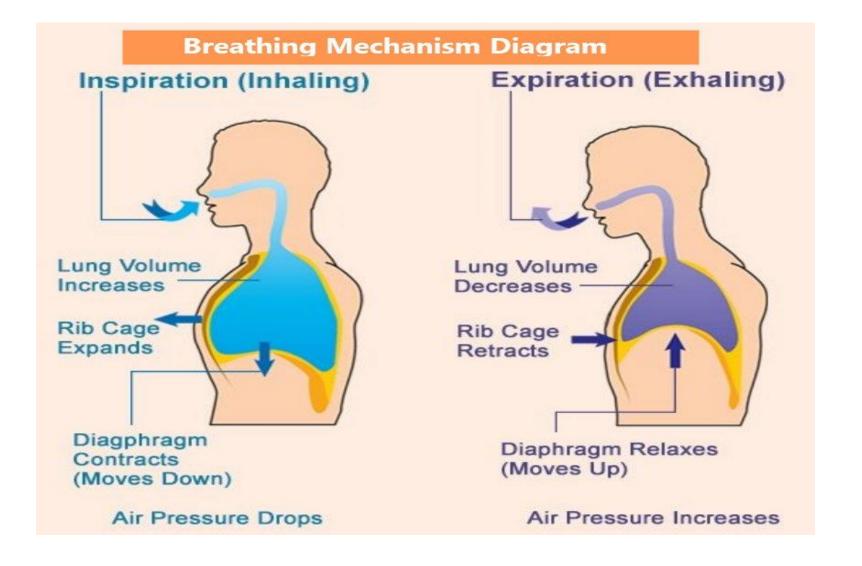
- The respiratory system helps regulate the blood's pH by controlling the levels of carbon dioxide.
- An increase in carbon dioxide leads to a decrease in pH (more acidic), while a decrease leads to an increase in pH (more alkaline).

#### c. Vocalization:

- The larynx facilitates sound production, allowing for speech and communication.

#### d. Protection:

- The respiratory system includes mechanisms like mucous production and ciliary action to trap and expel foreign particles and pathogens.


## Mechanism of Breathing

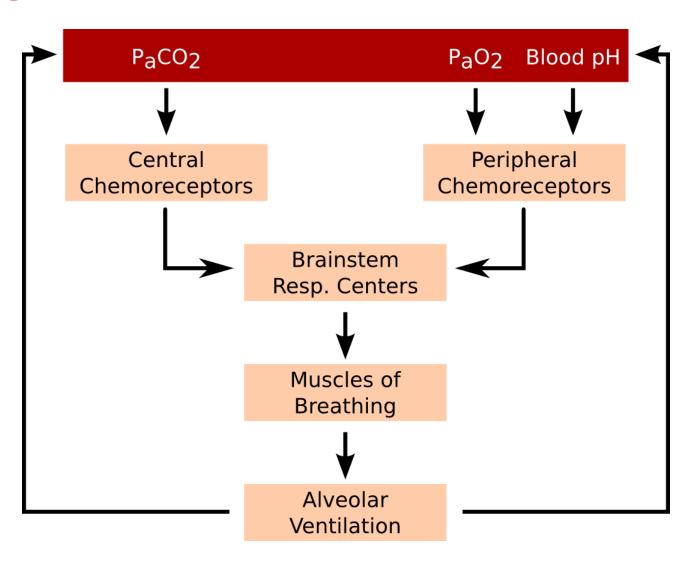
#### inspiration (Inhalation):

- Active Process: Diaphragm and intercostal muscles contract, increasing the thoracic cavity's volume.
- Airflow: The pressure inside the thoracic cavity decreases, causing air to flow into the lungs.

#### b. Expiration (Exhalation):

- Passive Process: The diaphragm and intercostal muscles relax, decreasing the thoracic cavity's volume.
- Airflow: The pressure inside the thoracic cavity increases, pushing air out of the lungs.




## Control of Breathing process

- 1. **Medulla Oblongata and Pons**: These brainstem centers regulate the rate and depth of breathing based on the body's needs.
- 2. Chemoreceptors: There are 2 types of Chemoreceptors central and peripheral chemoreceptors
- \*peripheral chemoreceptors :Location in the carotid bodies

Sensitive to changes in carbon dioxide, oxygen, and pH levels in the blood. They send signals to modify breathing patterns.

 central chemoreceptors : located in the Medulla Oblongata of the brain stem
 They sense changes in ph in cerebrospinal fluid (CSF)
 Which reflects the co2 level in the blood

## Diagram about Control of Breathing

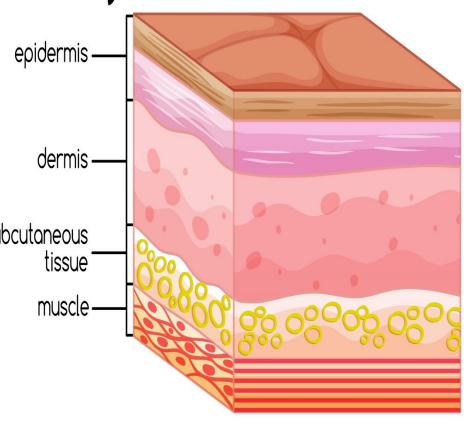


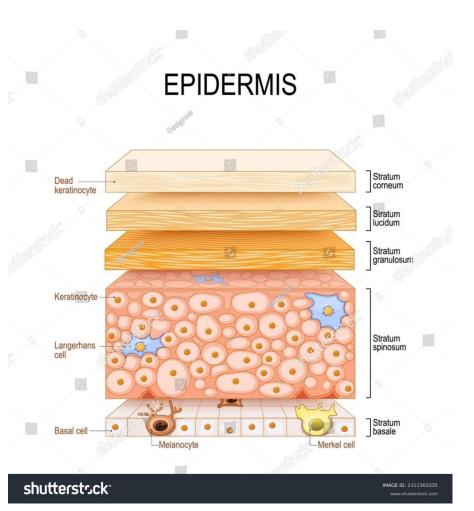
#### The skin

- The skin is the body's outermost layer and acts as a barrier between the internal organs and the external environment
- Functions of the Skin:
- 1. Protection:
- The skin protects internal organs and tissues from physical damage, pathogens (bacteria, viruses), and harmful substances in the environment..
- 2. Temperature Regulation:
- Through the dilation and constriction of blood vessels and the production of sweat, the skin helps maintain the body's temperature within a narrow range.
- 3. Sensation:
- The skin contains a variety of sensory receptors that detect pain, pressure, temperature, and touch.
- • 5. Vitamin D Synthesis:
- The skin synthesizes vitamin D when exposed to sunlight (UVB radiation).
- This vitamin is essential for the absorption of calcium and phosphate, promoting bone health.
- 6. Immunity:
- The skin acts as the first line of defense in the immune system.
- The epidermis contains cells like Langerhans cells that help detect pathogens and initiate immune responses.

#### Structure of the Skin:

The skin consists of three main layers, each with distinct structures and functions:


#### 1. Epidermis (Outer Layer):


- The epidermis is the outermost layer of the skin, composed of keratinized stratified squamous epithelium. Its main function is protection.
- The epidermis is avascular (lacks blood vessels) and relies on diffusion from the underlying dermis for nutrients.
- Dermis (Middle Layer):
- The dermis lies beneath the epidermis and is much thicker. It contains blood vessels, nerve endings, hair follicles, and glands.
- Hypodermis (Subcutaneous Layer):
- The hypodermis, also called the subcutaneous layer or superficial fascia, lies beneath the dermis. It is made up primarily of adipose tissue (fat) and connective tissue.

# layers of the Epidermis (from deep to superficial)

- Stratum basale The deepest layer, where new skin cells (keratinocytes) are formed through mitosis. This layer also contains melanocytes (cells that produce the pigment melanin)
- **Stratum spinosum:** it contains keratinocytes and Langerhans cells (immune cells).
- **Stratum granulosum**: In this layer, keratinocytes flatten and start to die, forming granules filled with keratin and lipids that create a waterproof barrier.
- Stratum lucidum: This thin, clear layer is only found in thick skin (such as the palms and soles). It consists of dead keratinocytes.
- Stratum corneum: The outermost layer, composed of dead, flattened keratinocytes (corneocytes). These cells form a tough, protective barrier and are constantly shed and replaced.

**Layers of Human Skin** 





# Thank you Any questions?