

Al-Zahraa University for women Health and Medical Technology College Department of Anesthesiology

Nursing Science

Vital Signs (Part Two)

Learning objectives

After completing this lecture, the students will be able to:

- Describe the mechanics of breathing and the mechanisms that control respirations.
- Identify the components of a respiratory assessment.
- Describe the respiratory rate and factors affecting respirations.
- Identify the blood pressure and determinants of blood pressure.
- Describe various factors affect the blood pressure and methods for assess measuring blood pressure
- Discuss measurement of blood oxygenation by using pulse oximetry and factors affecting oxygen saturation readings

3. Respirations

- **Respiration**: is the act of breathing (and gases exchange).
- Inhalation or inspiration: refers to the intake of air into the lungs.
- Exhalation or expiration: refers to breathing out, or the movement of gases from the lungs to the atmosphere.
- **Ventilation:** is also used to refer to the movement of air in and out of the lungs.

Breathing is of basically two types:

✓ Costal (thoracic) breathing:

- Involves the external intercostal muscles and other accessory muscles, such as the sternocleidomastoid muscles
- Observed by the movement of the chest upward and outward.

✓ Diaphragmatic (abdominal) breathing:

- Observed by the movement of the abdomen
- Involves the contraction and relaxation of the diaphragm.

Mechanics and Regulation of Breathing

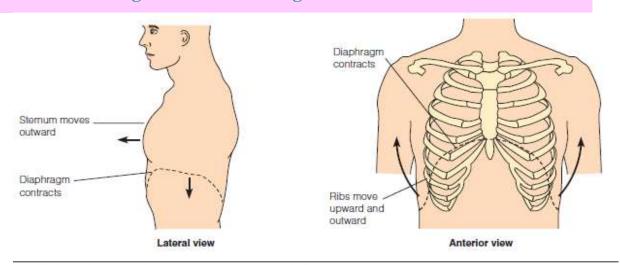


FIGURE 29.14 Respiratory inhalation: Left, Lateral view; Right, Anterior view.

Inhalation Diaphragm relaxes Stemum moves inward Diaphragm Ribs move relaxes downward and inward Lateral view Anterior view

FIGURE 29.15 Respiratory exhalation: Left, Lateral view; Right, Anterior view.

Exhalation

Respiration is controlled by:

- Respiratory centers in the medulla oblongata and the pons of the brain and
- Chemoreceptors located centrally in the medulla and peripherally in the carotid and aortic bodies. These centers and receptors respond to changes in the concentrations of oxygen (O2), carbon dioxide (CO2), and hydrogen (H⁺) in the arterial blood.

Ass. Lecture: MSc. Fatima R. Abd 4th stage Page 1 of 9

Assessing Respirations

Note:

- Resting respirations should be assessed when the client is relaxed
- Each respiration includes one complete inhalation and exhalation.

- 1. Rate: Breaths per minute
 - ✓ **Normally rate:** between 12 and 20 breaths per minute.
 - ✓ **Eupnea**: Breathing that is normal in rate and depth
 - ✓ **Bradypnea**: Abnormally slow respirations
 - ✓ **Tachycardia**: Abnormally rapid respirations
 - ✓ **Apnea:** is the absence of breathing.
- 2. Depth: Movement of the chest
 - ✓ Normal
 - ✓ **Tidal volume:** volume of air during normal inspiration and expiration, an adult takes in (about 500 ml) of air
 - ✓ **Deep respirations**: a large volume of air is inhaled and exhaled, inflating most of the lungs
 - ✓ **Shallow respirations**: a small volume of air inhaled and exhaled
 - ✓ **Hyperventilation:** refers to very deep, rapid respiration
 - ✓ **Hypoventilation:** refers to very shallow respirations.
 - The sleeping client's respirations can fall to fewer than 10 shallow breaths per minute
 - **3. Respiratory rhythm:** refers to the regularity of the expirations and the inspirations (regular or irregular)
 - Count regular respiratory rhythms for 30 seconds and multiply result by 2, and count irregular respiratory rhythms for a full minute.
 - **4. Respiratory quality or character**: refers to normal, <u>effortless breathing</u>. The <u>Normal breathing sound is silent</u>.

Dyspnea (labored): breath with substantial effort

Orthopnea: dyspnea occurs when lying flat position

5. The effectiveness of respirations: is measured in part by the <u>uptake of oxygen from the air into the blood</u> and the <u>release of carbon dioxide from the blood</u> into expired air.

Factors Affecting Respirations

- **Age:** As age increases, the respiratory rate gradually decreases.
- **Exercise:** Respirations increase in rate and depth with exercise.
- **Fever:** The respiratory rate will be faster in clients with an elevated temperature.
- Medications: Narcotics and other central nervous system depressants often slow the respiratory rate.
- Stress, anxiety and pain
- High and Low Environmental Temperature
- Respiratory, cardiovascular disease and increased intracranial pressure

4. Blood Pressure

Arterial blood pressure: is a measure of the pressure exerted by the blood as it flows through the arteries. Since the blood moves in waves, there are two blood pressure measures:

- The systolic pressure: is the pressure of the blood as a result of contraction of the ventricles, that is, the pressure of the height of the blood wave.
- The diastolic pressure: is the pressure when the ventricles are at rest.
 - ✓ Blood pressure is measured in millimeters of mercury (mmHg).

Mean Arterial Pressure (MAP): represents the pressure actually delivered to the body's organs. Normal MAP is 70 to 110 mmHg.

 $MAP = (systolic BP + 2 \times Diastolic BP) / 3$

Pulse pressure: The difference between the diastolic and systolic pressures systolic BP, normally is about 40 mmHg.

Ass. Lecture: MSc. Fatima R. Abd

- ✓ Anormal pulse pressure is about 40 mmHg but can be as high as 100 mmHg during exercise.
- ✓ Elevated pulse pressure occurs in arteriosclerosis.
- ✓ A low pulse pressure (e.g., less than 25 mmHg) occurs in conditions such as severe heart failure.

Determinants of Blood Pressure

- Pumping Action of the Heart: At lower cardiac output the blood pressure decreases and When at higher cardiac output the blood pressure increases.
- Peripheral Vascular Resistance: the capacity or diameter of the arterioles and capillaries. Peripheral resistance can increase blood pressure, diastolic pressure especially is affected.
- **Blood Volume**: When the blood volume decreases (for example, as a result of a hemorrhage or dehydration), the BP decreases, when the volume increases (for example, as a result of a rapid intravenous infusion), the BP increases.
- Blood Viscosity: when the proportion of RBCs to blood plasma is high, BP increases when the blood is highly viscous.

Factors Affecting Blood Pressure

- **Age:** increase with age
- Exercise: Physical activity increases cardiac output and ↑BP. For reliable assessment of resting blood pressure, wait 20 to 30 minutes
- **Stress:** increasing the blood pressure reading; however, severe pain can decrease blood pressure.
- Race
- Sex: After puberty, females usually have lower BP than males of the same age.

 After menopause, women generally have higher BP than before.
- Medications
- **Obesity:** Both childhood and adult obesity predispose to hypertension.

- **Diurnal variations:** Pressure is usually lowest early in the morning when the metabolic rate is lowest, then rises throughout the day and peaks in the late afternoon or early evening.
- **Medical conditions:** Any condition affecting the cardiac output, blood volume, blood viscosity, and/or compliance of the arteries has a direct effect on the blood pressure.

Temperature

• Sodium intake: A high sodium intake can increase the release of natriuretic hormone, which indirectly contributes to hypertension.

Assessing Blood Pressure

Methods for assessing BP

1. Direct (invasive monitoring)

- Measurement involves the insertion of a catheter into the brachial, radial, or femoral artery.
- Arterial pressure is represented as wavelike forms displayed on an oscilloscope. With correct placement, this pressure reading is highly accurate.

2. Indirect Methods (noninvasive)

- Auscultatory Method: is most commonly used in hospitals, clinics, and homes.
- Palpatory Methods: is sometimes used when Korotkoff's sounds cannot be heard and electronic equipment to amplify the sounds is not available, or to prevent misdirection from the presence of an auscultatory gap.

Sites for BP Assessment:

✓ **Upper arm**; most common site (Brachial Artery)

✓ **Thigh** (Popliteal Artery) indicated when blood pressure cannot be measured on either arm (e.g., because of burns or other trauma).

Ass. Lecture: MSc. Fatima R. Abd 4th stage Page 1 of 9 ✓ **Lower arm** (Radial artery); possible site for infants or clients who have very large upper arms.

Blood pressure is not measured on a particular limb (arm or leg) in the following situations:

- ❖ The shoulder, arm, or hand (or the hip, knee, or ankle) is injured or diseased.
- ❖ A cast or bulky bandage is on any part of the limb.
- ❖ Axilla or inguinal lymph nodes have been removed on the side of the limb (such as after radical mastectomy).
- ❖ Intravenous infusion is being given in that limb.
- ❖ The patient has an arteriovenous fistula (e.g., for renal dialysis) in that limb.

TABLE 29.5 Classification of Blood Pressure

Category	Systolic (mm Hg)	Diastolic (mm Hg)
Optimal	<120	and/or <80
Normal	<130	and/or <85
High Normal	130-139	and/or 85-89
Stage 1 HTN	140-159	and/or 90-99
Stage 2 HTN	>160	and/or ≥100

Source: Adapted from Canadian Hypertension Education Program. (2016). The 2016 Canadian Hypertension Education Program Recommendations. Ottawa, ON: Author. Retrieved from http://www.hypertension.ca/.

Alteration in Blood Pressure

1. Hypertension

- A blood pressure that is persistently above normal ≥140/90 mmHg
- Usually asymptomatic
- Factors associated with primary hypertension include
 - ☑ Thickening of the arterial walls
 - Reduces the size of the arterial lumen, and loss of elasticity

☑ lifestyle factors, such as cigarette smoking, obesity, heavy alcohol consumption, caffeine consumption, lack of physical exercise, high blood cholesterol levels, and continued exposure to stress.

2. Hypotension

- BP that is below normal, that is, a systolic reading consistently between 85-110 mm Hg in an adult.
- Orthostatic Hypotension is BP that falls when the patient sits or stands as evidenced by a decrease in systolic or diastolic BP of 10 mm Hg or a rise in pulse of 20 beats/min without any change in BP.

5. Oxygen Saturation

- A pulse oximeter is a noninvasive device that estimates a client's (SaO2) by means of a sensor attached to the client's finger, toe, nose, earlobe, or forehead (or around the hand or foot of a neonate).
- The pulse oximeter can detect hypoxemia (low oxygen saturation) before clinical signs and symptoms, such as a dusky color to skin and nail beds develop.
- Oxygen saturation assessed using the invasive approach is documented as SaO2
 (arterial oxygen saturation); oxygen saturation assessed by pulse oximetry is documented as SpO2 (peripheral oxygen saturation or tissue oxygenation)

BOX 29.3 OXIMETRY: UNDERSTANDING THE NUMBERS		
SpO ₂ , %	Oxygenation	
95-100	Normal	
91-94	Mild hypoxia	
86-90	Moderate hypoxia	
<85	Severe hypoxia	
	ry measurements should always be interpreted with other patient factors, including signs and hypoxia.	

Factors Affecting Oxygen Saturation Readings

- **Hemoglobin**: If the hemoglobin is fully saturated with oxygen, the SpO2 will appear normal, even if the total hemoglobin level is low.
- Circulation: The oximeter will not provide an accurate reading if the area under the sensor has impaired circulation or poor perfusion
- Activity: Shivering, tremors, wiggling, seizures or excessive movement of the sensor site can interfere with accurate readings
- Carbon monoxide poisoning: Pulse oximeters cannot discriminate between hemoglobin saturated with carbon monoxide (CO) versus oxygen.
- **Bright lights**: Bright lights may cause falsely low oximeter readings
- Nail polish

References

- 1. Berman, A., Snyder, SH., & Frandsen, G. (2016). Kozier and Erb's Fundamentals of nursing: concepts; 10 process; and practices. 10th edition. Pearson education, Inc. United states of America: 496-510.
- 2. Berman, A., Snyder, SH., & Frandsen, G. (2022). Kozier and Erb's Fundamentals of nursing: concepts; process; and practices. Ninth edition. Pearson education, Inc. United states of America: 556-570.
- 3. Kozier, B., Erb, G., Berman, A., Snyder, SH., & Frandsen, G., Buck, M., Ferguson, L., Yiu, L., and Stamler, L. (2018). Fundamentals of Canadian Nursing: Concepts, Process, and Practice. 4th edition. Pearson Canada Inc., Pp. 648-.664

Ass. Lecture: MSc. Fatima R. Abd